VALIDATION OF MONTE CARLO YIELD FUNCTION OF A SEMI-LEADED NEUTRON MONITOR USING LATITUDE SURVEY DATA IN 2019 AND 2020

A. SERIPIENLERT, W. NUNTIYAKUL, S. KHAMPHAKDEE, P.-S. MANGEARD, A. SÁIZ, D.RUFFOLO, P. EVENSON, K. FONGSAMUT, P. JIANG, P. CHUANRAKSASAT, K. MUNAKATA, J. MADSEN, B. SOONTHORNTHUM AND S. KOMONJINDA

Latitude Survey Project

ATMOSPHERIC SIMULATION

Image credit: http://scifun.ed.ac.uk/card/images/left/ cosmic-rays.jpg

DETECTOR SIMULATION

SIMULATION INFORMATION

YIELD FUNCTION

	Туре	No. of simulated particles
Atmospheric simulation	p	1,000,000
	α	1,000,000
Library	п	136,508
	p	13,486
	μ	1,149,070
Detector simulation	п	100,000,000
	p	100,000,000
	μ	75,000,000

FIGURE 1 Yield functions for protons and alphas of Changvan neutron monitor.

COUNT RATES VS CUTOFF RIGIDITY

FIGURE 2 (a) Comparison between (a) Simulation count rate and (b) Data count rate. The simulation count rate is higher than the Data count rate.

COUNT RATES RATIOS VS CUTOFF RIGIDITY

FIGURE 3 (a) The ratios of unleaded/leaded NM count rates. (b) The ratio of leaded/leaded NM rates.

PROGRESS SO FAR

Rigidity 1 – 200 GV \rightarrow Rigidity 1 – 500 GV

	Туре	No. of simulated particles		No. of simulated particles	Status
Atmospheric simulation	p	1,000,000		5,000,000	\checkmark
	α	1,000,000		5,000,000	\checkmark
Library	п	136,508	\Rightarrow	1,266,246	\checkmark
	p	13,486	\implies	138,271	\checkmark
	μ	1,149,070	\Rightarrow	15,399,176	\checkmark
Detector simulation	п	100,000,000		500,000,000	500M
	p	100,000,000	\Rightarrow	500,000,000	250M
	μ	100,000,000		500,000,000	30.5M

YIELD FUNCTION

COUNT RATES VS CUTOFF RIGIDITY

ICRC

POST-ICRC

POST-ICRC [NO MUON]

COUNT RATES RATIOS VS CUTOFF RIGIDITY

COUNT RATES RATIOS VS CUTOFF RIGIDITY

POST-ICRC [NO MUON]

OTHER WORK

CALMON PATHLENGTH REMOTE 5.0 OUTREACH

TRACING MAGNETIC FIELD LINES AND PARTICLE MOTION

Pathlength 1

ELECTRONICS

Remote 5.0

OUTREACH

Translation
IceCube comic books.

FIGURE 24 Oden IceTop Tank

- L INTRODUCTION
- [First pasagraph] [Attraduce transport Intraduce parallel transport
- Explain physics of facus to Expected focus transport (s
- Literatures to read; Rat RicherEA94, PalmerS2, ...

Decend externels]

- Introduce two component Driefly explain the model
- [Third paragraph]
- What we do in this work What we found in our wor
- Link to one of time

L INTRODUCTION (First pasagraph) Introduce transport Introduce parallel transport Explain physics of facus trans Expected focus transport (s =

[Second externabl Introduce two components Drivity explain the model

(Third paragraph) What we do in this work What we found in our work

Link to one of time

Literatures to read Raffold 1, Ro